# Corrections to Scaling for Period Doubling 

Jian-min Mao ${ }^{1}$ and Bambi $\mathbf{H u}^{2}$

Received April 15, 1986; revision received October 9, 1986


#### Abstract

We have studied a multiple scaling which describes corrections to scaling. For the period doubling in one-dimensional dissipative maps, two-dimensional areapreserving maps, and four-dimensional symplectic maps, the multiple scaling is seen to be well-obeyed, and new scaling factors have been found. The multiple scaling is also seen to be a very powerful tool for searching for scaling behavior.


KEY WORDS: Period doubling; map; critical value; parameter convergence rate; orbital scaling factor; correction to scaling.

## 1. INTRODUCTION

Feigenbaum discovered ${ }^{(1)}$ universal scaling behavior in the period-doubling route to chaos. The transition to chaos is characterized by two scaling exponents, a parameter convergence rate $\delta$ and an orbital scaling factor $\alpha$. For a set of critical values of the parameter $a_{n}$ ( $n$ denotes the order of period-doubling bifurcation), $\left\{a_{n}\right\}=\left\{a_{n}, n=0,1,2, \ldots\right\}$, their difference $\Delta a_{n}=a_{n}-a_{n-1}$ converges geometrically to zero, i.e., when $n$ is large,

$$
\begin{equation*}
\Delta a_{n}=C \delta^{-n} \tag{1}
\end{equation*}
$$

where $\delta=4.6692$ for one-dimensional quadratic maps. For a sequence of orbital elements $\left\{x_{n}\right\}$ one has a similar scaling: when $n$ is large

$$
\begin{equation*}
\Delta x_{n}=C^{(x)} \alpha^{-n} \tag{2}
\end{equation*}
$$

where $\alpha=2.5029$ for the quadratic maps.

[^0]Previously MacKay ${ }^{(2)}$ found corrections to scaling of the form $\delta^{n} \Delta a_{n} \sim C_{1}+C_{2} \delta^{\prime n}$. He interpeted these corrections as resulting from a contracting eigenvector of the renormalization with the eigenvalue $\delta^{\prime}$. This is analogous to what happens in critical phenomena.

In this brief report, we will expand this correction to scaling into both parameter and orbital sequence in all one-, two-, and four-dimensional (1d, 2 d , and 4 d ) maps. We will see that a multiple scaling [i.e., more than one term on the right side of Eq. (1) or Eq. (2)] is well obeyed. New scaling factors (characterizing the corrections to scaling) have been found. Corrections to scaling for period doubling in 1 d dissipative maps, 2 d areapreserving maps, and 4 d symplectic maps are discussed, respectively, in Sections 2-4. A summary of the results is given in Section 4.

## 2. CORRECTIONS TO SCALING IN ONE-DIMENSIONAL DISSIPATIVE MAPS

The idea of corrections to scaling is to search for a "finer" scaling behavior, if any. We try to generalize Eq. (1) [or Eq. (2)] to, when $n$ is large,

$$
\begin{equation*}
\Delta a_{n}=C_{1} r_{1}^{-n}+C_{2} r_{2}^{-n}+\cdots=\sum_{i=1}^{1} C_{i} r_{i}^{-n} \tag{3}
\end{equation*}
$$

where $n$ denotes the order of bifurcation, $i$ the level of scaling, $r$ the scaling factor, $C$ a constant, and $I$ the total number of scaling levels. When $I=1$, Eq. (3) reduces to the regular scaling (one-term scaling) described by Eq. (1).

We will see that Eq. (3) is indeed well obeyed: the $r_{1}$ tends to $\delta=4.669$ for the quadratic 1 d maps when $n \rightarrow \infty$ ( $r_{i}$ is arranged in an increasing sequence $r_{1}<r_{2}<r_{3}<\cdots$ ), and all other $r_{i}$ tend to a constant individually. Thus, Feigenbaum's one-term scaling (1) becomes the lowest order of approximation (i.e., the first term) of Eq. (3). The rest of the terms of Eq. (3) constitute corrections to the Feigenbaum scaling.

To evaluate the scaling factors $r_{i}$ in the multiple scaling, we first derive equations for them. Equation (3) gives

$$
\begin{equation*}
\Delta a_{n}-t_{1} \Delta a_{n+1}+t_{2} \Delta a_{n+2}-\cdots+(-1)^{I} t_{r} \Delta a_{n+1}=0 \tag{4}
\end{equation*}
$$

where
$t_{1}=\sum_{i=1}^{I} r_{i}, \quad t_{2}=\sum_{i<j}^{I} r_{i} r_{j}, \quad t_{3}=\sum_{i<j<k}^{I} r_{i} r_{j} r_{k}, \ldots, \quad t_{I}=r_{1} r_{2} \cdots r_{I}$

Thus, the scaling factors are solutions of the following eigenvalue equation:

$$
\begin{equation*}
r^{I}-r^{I-1} t_{1}+r^{I-2} r_{2}-\cdots+(-1)^{m} r^{I-m} t_{m}+\cdots+(-1)^{I} t_{l}=0 \tag{6}
\end{equation*}
$$

To evaluate $r_{i}$, one first calculates the $t_{i}$ by $\Delta a_{n}$ using Eq. (4), and then calculates the $r_{i}$ by $t_{i}$ using Eq. (6).

We have calculated the scaling factors $\left(r_{i}\right)$ of the parameter sequence $\left\{a_{n}\right\}$ for several 1 d maps, and found that the multiple scaling is always very well obeyed. In Table I, results for the map $x^{\prime}=1-a x^{2}$ are listed. For this quadratic map, the multiple scaling can be expressed as

$$
\begin{equation*}
\Delta a_{n}=\frac{C_{1}}{\delta^{n}}+\frac{C_{2}}{\left(\delta^{2}\right)^{n}}+\frac{C_{3}}{\left(\delta^{2} \delta^{\prime}\right)^{n}}+\frac{C_{4}}{\left(\delta^{2} \delta^{\prime \prime}\right)^{n}}+\frac{C_{5}}{\left(\delta^{3}\right)^{n}}+\frac{C_{6}}{\left(\delta^{3} \delta^{\prime}\right)^{n}}+\cdots \tag{7}
\end{equation*}
$$

Table I. Corrections to Scaling for the Parameter of the Map $x^{\prime}=1-a x^{2}$

| $n$ | Scaling factors $r_{i}$ in the multiple scaling, Eq. (3) |  |  |
| :---: | :---: | :---: | :---: |
|  | $r_{1}=\delta$ | $r_{2}$ | $r_{3}$ |
| 9 | 4.6692016253334106782 | 21.7957136 | -38.8273 |
| 10 | 4.6692016081444497285 | 21.8031908 | -38.2189 |
| 11 | 4.6692016091403450356 | 21.8011674 | -38.9390 |
| 12 | 4.6692016091001597539 | 21.8015570 | -38.8505 |
| 13 | 4.6692016091031000947 | 21.8014265 | -38.7966 |
| 14 | 4.6692016091029806731 | 21.8014530 | $-38.7801$ |
| 15 | 4.6692016091029909973 | 21.8014426 | $-38.7680$ |
| 16 | 4.6692016091029906319 | 21.8014446 | -38.7650 |
| 17 | 4.6692016091029906728 | 21.8014436 | -38.7621 |
| 18 | 4.6692016091029906718 | 21.8014448 | -38.7616 |
|  |  | The Factorization of $r_{i}$ |  |
| $n$ |  | $r_{2} / \delta$ | $r_{2} / \delta^{2}$ |
| 9 |  | 4.667944 | -1.78095 |
| 10 |  | 4.6695757 | $-1.75304$ |
| 11 |  | 4.6691424 | $-1.74020$ |
| 12 |  | 4.6692258 | -1.73614 |
| 13 |  | 4.6691979 | -1.73367 |
| 14 |  | 4.6692036 | -1.73291 |
| 15 |  | 4.6692013 | -1.73236 |
| 16 |  | 4.6692018 | -1.73222 |
| 17 |  | 4.6692016 | $-1.73209$ |
| 18 |  | 4.6692016 | $-1.73207$ |

where

$$
\begin{equation*}
\delta=4.66920160910299067, \quad \delta^{\prime}=-1.7320, \quad \delta^{\prime \prime}=-3.739 \tag{8}
\end{equation*}
$$

One can see that the multiple scaling is very powerful for searching for $\delta$ : its results to the 11 th bifurcation give the same accuracy for $\delta$ as that of the one-term scaling to the 20 th bifurcation. The $\delta^{\prime}$ and $\delta^{\prime \prime}$ are new scaling factors.

The new scaling factor $\delta^{\prime}$ and $\delta^{\prime \prime}$ (as well as the Feigenbaum constant $\delta$, of course) are universal in a family of maps ${ }^{(3)}$ with $z=2$, where $z$ is order of the local maximum and thus is the order of the first nonzero term (except constant term) in the corresponding Feigenbaum invariant function

$$
\begin{equation*}
g(x)=1+\sum_{i=1}^{\infty} a_{i} x^{z i} \tag{9}
\end{equation*}
$$

However, when $z$ varies, all $\delta, \delta^{\prime}$, and $\delta^{\prime \prime}$ vary. For instance, in a family of maps with $z=4$,

$$
\begin{equation*}
\delta=7.2846862170733, \quad \delta^{\prime}=3.426, \quad \delta^{\prime \prime}=-4.0 \tag{10}
\end{equation*}
$$

Moreover, the $\delta^{\prime}$ and $\delta^{\prime \prime}$ (as well as $\delta$ ) should be, in principle, discernible in the power spectrum, although in practice it is very difficult to have such high resolution.

For "central" (i.e., around the superstable fixed point) orbital sequence $\left\{x_{n}\right\}$ in period doubling, Young ${ }^{(4)}$ has found that the parameter scaling factor $\delta$ appears in the orbital scaling, i.e., $\Delta x_{n}=C_{1} \alpha^{-n}+C_{2}(\alpha \delta)^{-n}$. When using more terms in the multiple scaling, we found that the new parameter scaling factors $\delta^{\prime}$ and $\delta^{\prime \prime}$ also appear in the orbital scaling. For the map $x^{\prime}=1-a x^{2}$, we have

$$
\begin{align*}
\Delta x_{n}= & C_{1}(\alpha)^{-n}+C_{2}(\alpha \delta)^{-n}+C_{3}\left(\alpha^{3}\right)^{-n}+C_{4}\left(\alpha \delta \delta^{\prime}\right)^{-n} \\
& +C_{5}\left(\alpha \delta \delta^{\prime \prime}\right)^{-n}+C_{6}\left(\alpha \delta^{2}\right)^{-n}+\cdots \tag{11}
\end{align*}
$$

where $\delta, \delta^{\prime}$, and $\delta^{\prime \prime}$ are listed in Eq. (8), and

$$
\begin{equation*}
\alpha=-2.5029078750958928 \tag{12}
\end{equation*}
$$

It is seen that the multiple scaling in the 12 th bifurcation gives the same accuracy of $\alpha$ as that of the one-term scaling in the 20th bifurcation.

## 3. CORRECTIONS TO SCALING IN TWO-DIMENSIONAL AREA-PRESERVING MAPS

The idea of corrections to scaling for 1d maps described in the previous section can be extended to 2 d maps. Consider a 2 d areapreserving map, such as the Hénon map

$$
\begin{equation*}
x^{\prime}= \pm y+1-a x^{2}, \quad y^{\prime}=\mp x \tag{13}
\end{equation*}
$$

Let $a_{n}$ denote the critical value of the parameter, and $\left(x_{n}^{(0)}, y_{n}^{(0)}\right)$ the coordinates of the fixed points of a $2^{n}$-cycle on the dominant symmetry line. To study the scaling for parameter and orbital elements along and across the dominant symmetry line, one constructs sequences $\left\{a_{n}\right\},\left\{x_{n}^{(0)}-x_{n}^{(1 / 2)}\right\}$, and $\left\{y_{n}^{(1 / 4)}\right\}$, where $\frac{1}{2}$ and $\frac{1}{4}$ denote the half-way and the quarter-way elements of the cycle, respectively. We found that all three sequences again obey the multiple scaling:

$$
\begin{align*}
& \Delta a_{n}= C_{1} \delta^{-n}+C_{2}\left(\delta \delta^{\prime}\right)^{-n}+C_{3}\left(\delta^{2}\right)^{-n}+\cdots \\
& \Delta\left(x_{n}^{(0)}-x_{n}^{(1 / 2)}\right)= C_{1}^{(x)} \alpha^{-n}+C_{2}^{(\alpha)}\left(\alpha^{2}\right)^{-n}+C_{3}^{(x)}\left(\alpha \delta^{\prime}\right)^{-n} \\
&+C_{4}^{(x)}(\alpha \delta)^{-n}+C_{5}^{(x)}\left(\alpha^{3}\right)^{-n}+\cdots \\
& \Delta y_{n}^{(1 / 4)}= C_{1}^{(y)} \beta^{-n}+C_{2}^{(y)}(\alpha \beta)^{-n}+C_{3}^{(\nu)}\left(\beta \delta^{\prime}\right)^{-n} \\
&+C_{4}^{(v)}(\beta \delta)^{-n}+C_{5}^{(y)}\left(\beta^{2}\right)^{-n}+\cdots  \tag{14}\\
& \delta=8.72109720060340, \quad \quad \delta^{\prime}=-8.57384 \\
& \alpha=-4.018076704798909, \quad \beta=16.363896879529 \tag{15}
\end{align*}
$$

These $\delta, \alpha$, and $\beta$ values are the same as, but with much higher accuracy than, those obtained from the one-term scaling. The $\delta^{\prime}$ cannot be factored into $\delta, \alpha$, and $\beta$.

## 4. CORRECTIONS TO SCALING IN FOUR-DIMENSIONAL SYMPLECTIC MAPS

For a 4d Hénon-like symplectic map, ${ }^{(5)}$

$$
\begin{align*}
& x^{\prime}=-y+1-a x^{2}-b(x+z) \\
& z^{\prime}=-t+1-a z^{2}-b(x-z) \\
& y^{\prime}=x  \tag{16}\\
& t^{\prime}=z
\end{align*}
$$

a similar analysis of corrections to scaling can be performed. We will therefore only give the results.

The parameter sequences obey the following multiple scaling:

$$
\begin{equation*}
\Delta A_{n}=C_{1}^{(A)} \delta_{1}^{-n}+C_{2}^{(A)} \delta_{2}^{-n}+\cdots \tag{17}
\end{equation*}
$$

where $A$ could be $a$ or $b, C_{i}^{(A)}$ (a constant) for $a$ is different from that for $b$, and

$$
\begin{equation*}
\delta_{1}=8.721096, \quad \delta_{2}=-15.0787 \tag{18}
\end{equation*}
$$

For the scalar sequences $\left\{x_{n}^{(0)}-x_{n}^{(1 / 2)}\right\}$ and $\left\{z_{n}^{(0)}-z_{n}^{(1 / 2)}\right\}$ on the dominant symmetry surface, the multiple scaling is again seen to be very well obeyed,

$$
\begin{align*}
\Delta\left(X_{n}^{(0)}-X_{n}^{(1 / 2)}\right)= & C_{1}^{(X)} \alpha_{1}^{-n}+C_{2}^{(X)}\left(\alpha_{1}^{2}\right)^{-n} \\
& +C_{3}^{(X)}\left(\alpha_{1} \alpha^{\prime}\right)^{-n}+C_{4}^{(X)}\left(\alpha_{1} \delta_{1}\right)^{-n}+C_{5}^{(X)}\left(\alpha_{1}^{2} \alpha^{\prime}\right)^{-n}+\cdots \tag{19}
\end{align*}
$$

where $X$ could be $x$ or $z, C_{i}^{(x)}$ (a constant) for $x$ is different from that for $z$, and

$$
\begin{equation*}
\alpha_{1}=-4.018076704, \quad \alpha^{\prime}=-8.5 \tag{20}
\end{equation*}
$$

For the sequence $\left\{y_{n}^{(1 / 4)}\right\}$ and $\left\{t_{n}^{(1 / 4)}\right\}$ across the dominant symmetry surface, the multiple scaling is

$$
\begin{equation*}
\Delta Y_{n}^{(1 / 4)}=C_{1}^{(Y)} \beta_{2}^{-n}+C_{2}^{(Y)} \beta_{1}^{-n}+C_{3}^{(Y)}\left(\alpha_{1} \beta_{2}\right)^{-n}+C_{4}^{(Y)}\left(\alpha_{1} \beta_{1}\right)^{-n}+\cdots \tag{21}
\end{equation*}
$$

where $Y$ could be $y$ or $t, C_{i}^{(Y)}$ (a constant) for $y$ is different from that for $t$, and

$$
\begin{equation*}
\beta_{1}=16.363, \quad \beta_{2}=-7.53935 \tag{22}
\end{equation*}
$$

## 5. SUMMARY

We have studied corrections to scaling for both the parameter sequences and the orbital sequences in one-, two-, and four-dimensional maps. We have arrived at the following observations:

1. For a sequence $\left\{u_{n}\right\}$ of critical values in period doubling, $u$ being a parameter or an orbital element, the multiple scaling

$$
\Delta u_{n}=C_{1}^{(u)} r_{1}^{-n}+C_{2}^{(u)} r_{2}^{-n}+C_{3}^{(u)} r_{3}^{-n}+\cdots
$$

is very well obeyed when $n$ is large. All the $r_{i}$ are products of a certain number of "fundamental" scaling factors (a fundamental scaling factor is one
that cannot be factored into other scaling factors, e.g., $\delta, \delta^{\prime}, \delta^{\prime \prime}, \alpha, \beta$, etc.; but $\delta^{2}, \alpha \delta, \alpha^{2}$, etc., are not fundamental).
2. For the parameter sequences, only some of the fundamental scaling factors (i.e., only $\delta$ 's, not $\alpha$ 's or $\beta$ 's) are involved in the corrections to scaling. For orbital sequences, all fundamental scaling factors ( $\alpha$ 's, $\beta$ 's, and also $\delta$ 's) are involved.

## ACKNOWLEDGMENTS

Our interest in this investigation was stimulated by the work of K . Young. This work was supported in part by the University of Houston Advanced Research Program and by the La Jolla Institute Contract, U. S. Department of Energy, DE-AC02-84ER40182.

## REFERENCES

1. M. J. Feigenbaum, J. Stat. Phys. 19:25 (1978); 21:699 (1978); Commun. Math. Phys. 77:65 (1980); Los Alamos Sci. 1:4 (1980).
2. R. MacKay, Ph.D. thesis, Princeton University (1982).
3. B. Hu and J. M. Mao, Phys. Rev. A 25:3259 (1982).
4. K. Young, Phys. Lett. $111 \mathrm{~A}: 161$ (1985); K. L. Liu, W. S. Lo, and K. Young, Phys. Lett. 105A:103 (1984).
5. J. M. Mao, I. Satija, and B. Hu, Phys. Rev. A 32:1927 (1985).

[^0]:    ${ }^{1}$ Center for Studies of Nonlinear Dynamics (affiliated with the University of California-San Diego), La Jolla Institute, La Jolla, California 92037.
    ${ }^{2}$ Department of Physics, University of Houston, University Park, Houston, Texas 77004.

